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Preamble

Locality and causality are intimately tied to the concept of

“fields”.

Faraday(1831): To resolve the “nonlocal” electromagnetic

induction, he postulated the lines of force.

Maxwell(1865): He interpreted Faraday in terms of the

electromagnetic field.

Since then the field concept has dominated the reconciliation of

locality with causality.
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Notable attempts to overcome this limitation: causal sets

(Sorkin), causal dynamical triangulations ( Ambjörn and Loll).

Here we study the vacuum with focus on locality and causality

in relativistic quantum field theory.

The plan is to review certain remarkable features: they are not

encountered for finite degrees of freedom.
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the unique state |0〉〈0| with zero four momentum:

Pµ|0〉 = 0.

It is an idealization of “nothingness”.

Vacuum is vacuous.

When all material bodies,particles, fields are removed - we
are left with the vacuum.

It is a featureless terrain with no significant properties,
colourless, odourless.
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There is also another, more romantic view. It dates to QFT in

its infancy.

According to this view, encouraged by perturbation theory, it is

turbulent.

Particle and anti-particle pairs constantly appear and disappear,

then kill each other off.

In the first picture, if say two detectors are inserted at spacelike

distance, there should be no mutual influence.

We show that this is not the case.

This may not surprise the second camp.
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An Experiment of Fermi

States |α〉 and |β〉 are at a distance R apart. Quantum State
vector at time, t = 0, is

|Ψ, t = 0〉 = |α〉 ⊗ |β〉|0〉γ

Consider t < R
c . By causality, photon from the decay of |β〉

cannot excite |α〉.
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With normalised states, we infer that

〈Ψ, 0|e iHt(1− |χ〉〈χ|)e−iHt |Ψ, 0〉 = 0

where
|χ〉 = |α〉 ⊗ 1⊗ 1

for time t < R
c

which is the probability of finding atom α in any excited state.

Surprise!

If this is correct, either |α〉 will never get excited

or

|α〉 will go instantaneously excited - violating causality.
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Proof

Q = 1− |χ〉〈χ| = Q2

⇒ Qe−iHT |Ψ, 0〉 = 0, t <
R

c
.

If PE projection operator to energy E ,∫
E≥0

dµ(E )e−iEtQPE |Ψ, 0〉 = 0, t <
R

c
(1)

Thus for any state |Φ〉 ∈ H∫
E≥0
〈Φ|e−iEtQPE |Ψ, 0〉dµ(E ) = 0, t <

R

c
.
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But if Im t < 0 ,

e−iEt = e−iERe teEIm t

is holomorphic.Or (1) = Boundary value of a function

holomorphic for Im t < 0.

But it is zero for t < R
c . So it is identically zero.

If we abandon causality, (1) need not be zero. Then there is

instantaneous propagation of signals!
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What is wrong? We assumed

H ≥ 0.

Hilbert space H of α, β and photon is factorizable:

H = Hα ⊗Hβ ⊗Hγ (2)
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The first one is needed for stability.
The second one is wrong for localized observables: If A = all
observables

A = Aα ⊗Aβ ⊗Aγ
with Aα,β,γ commuting, still (2) is false in QFT.



The Turbulent
Vacuum

A. P.
Balachandran

An Example from Quantum Mechanics

Consider two commuting rigid rotors. A = observables
generated by

CSO(3)L ∨ CSO(3)R CSO(3)L ∩ CSO(3)R = C1

Hilbert space

H = L2(SO(3)) (ψ, χ) =

∫
dµ(g)ψ̄(g)χ(g)

g :
(
UL(g)ψ

)
(h) = ψ(g−1h)(

UR(g)ψ
)

(h) = ψ(hg),

with
ψ(h) =

∑
ψJ
λµD

J
λµ(h)

Note that ψ(h) does not factorize into HL ⊗HR .
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Remark

H has no projector P(K ) projecting to a spacetime region K if

K ′ = causal complement of K 6= ∅. I will show this.

It means :

States cannot be localised.

But first note one implication: There are no localised detectors.

For |ψα〉, if a localised state, could be a localised detector.
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Towards the Proof

Our first step is Reeh-Schlieder Theorem:

Let K be any spacetime region 6= { point}. Then for xi ∈ K ,

linear span of

ϕ(x1) · · ·ϕ(xN)|0〉, N = 1, 2, · · · (3)

approximates any vector in Hilbert space H arbitrarily well.

To prove:

For any |χ〉 ∈ H,

〈χ|ϕ(x1) · · ·ϕ(xN)|0〉 = 0 (4)

implies |χ〉 = 0.
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(4) implies

〈χ|e iP.x1ϕ(0)e−iP.x1e iP.x2 · · ·ϕ(0)|0〉 = 0

⇒
∫

dµ(pi )e
i(p1.x1+···−pN .xN)

× 〈x |ϕ(0)|p1〉〈p1|ϕ(0)|p2〉 · · ·ϕ(0)|pN〉〈ϕ(0)|0〉 = 0(5)

with pi = total 4-momenta in vectors |pi 〉.

aibalachadmin
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But pi ∈ V+ = Closure of the forward light cone.

So if ξ ∈ V+= interior of V+,

ξ.pi > 0

So if

x1 = Re x1 + iξ1

x1 − x2 = Re x1 − x2 − iξ2
...

and pi .ξi > 0, one gets (5) being holomorphic.

aibalachadmin
Sticky Note
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If its boundary value = 0 , it is identically 0.

⇒ 〈χ|ϕ(x1) · · ·ϕ(xN)|0〉 = 0 ∀xi and N

But such ϕ(x1) · · ·ϕ(xN)|0〉 generate all H ⇒ |χ〉 = 0
QED

Instead of vacuum, we can use any vector |ψ〉 ∈ H of finite
energy in above theorem.
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No Projectors!

Now we proceed to our result:

If K is a spacetime region, K ′ its causal complement 6={ point},
the observables localised on K ,K ′ : AK ,AK ′ commute⇒

AK∪K ′ = AK ∨ AK ′ = A

which is a “bipartite system”.

This tempts us to guess that Hilbert spaces also behave in a

similar way:

HK∪K ′
?
= HK ⊗HK ′

The result we find is: NO!
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How to defeat Fermi?

The Reeh-Schlieder theorem tells us that ϕ(x1) · · ·ϕ(xN)|ψ〉 ,

with xi ∈ K or K ′ both give the same full Hilbert space! Thus

there are no projectors P(K ),PK ′ to K and K ′.

Reeh-Schlieder subdues Fermi:

H 6= Hα ⊗Hβ ⊗Hγ
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On Partial Traces over states, Functional Integrals

In QFT, as localised states do not exist, partial traces to
compute entropy etc. need reexamination.
Functional integrals too, when used to calculate say transition
amplitudes between states need to be critically examined.

Coleman Theorem

Symmetry generators, like ,

Charge Q =

∫
d3x j0(x)

Axial Charge Q5 =

∫
d3x j50 (x)

are integrals of local densities j0(x), j50 (x).
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Note: the quantities like [H, j0(x)] are local fields - where H is

the Hamiltonian.

Theorem(Coleman)

If say Q5 annihilates vacuum, it commutes with H: Invariance

of the vacuum is the invariance of the world.

Proof:

If ∫
j0 d3x |0〉 = 0, → 〈{pi}|

∫
d3x j0(x)|0〉 = 0

With P =
∑

i pi , j0(x) = e iP.x j0(0)e−iP.x , we get

δ3(P)〈{pi}|j0(0)|0〉 = 0, ⇒ 〈{pi}|j0(0)|0〉|P=0 = 0
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Proof(Contd.)

〈{pi}|∂λjλ(0)|0〉|P=0 = 0

since ∂i ji (0) = [Pi , Ji (0)].

Hence

〈{pi}|∂λjλ(x)|0〉|P=0 = 0

by

∂λjλ(x) = e iP.x∂λjλ(0)e−iP.x

But any state |{pi}〉 can be transformed to |{pi}〉P=0 since

P ∈ V+.
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〈{pi}|∂λjλ(x)|0〉|P=0 = 0

⇒
∂λjλ(x)|0〉

But ∂λjλ is a local field ⇒ By Reeh-Schlieder,

∂λjλ(x) = 0⇒ ∂0
∫

j0(x) d3x = i [P0,

∫
j0(x) d3x ] = 0

So symmetry of the vacuum is the symmetry of the world.

aibalachadmin
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We can combine this theorem with the Fabri-Picasso theorem

The integral

Q(t) =

∫
d3x j(x)

of a local field either diverges on the vacuum or annihilates it (

so is an exact symmetry).

The proof assumes that the vacuum is isolated in the spectrum

of Pµ. Proof

〈0|Q(t)Q(t)|0〉 =

∫
d3x 〈0|J(0)Q(t)|0〉 =∞

unless

Q(t)|0〉 = 0!

aibalachadmin
Sticky Note
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QCD seems to avoid this theorem since {0} is not isolated in

spectrum Pµ.

In spontaneous breakdown also {0} is not isolated due to the

Goldstone modes.
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Conclusion: In non-relativistic quantum mechanics we have:
Born Localisation.
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Born Localisation

If K ,K ′ spatial regions at same time with projectors PK ,PK ′ ,
and

K ∩ K ′ = ∅ ⇒

|ψK 〉 = P(K )|ψ〉, |χK ′〉 = P(K ′)|χ〉, are localised orthogonally
in K ,K ′ :

〈ψK |χK ′〉 = 0 Orthogonal Localisation

Born localisation fails in QFT with causality.
We only have causal or symplectic localisation of observables:

αK ∈ AK , βK ′ ∈ AK ′ ⇒ [αK , βK ′ ] = 0
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The Rindler Wedge

Now let us look at the behaviour of QED on the Rindler wedge.

W ,W ′ shown above are causal complements ⇒
[αW , βW ′ ] = 0 where αW ∈ AW = observables in W .

As we saw ,

AW∪W ′ = AW ∨ AW ′ , AW ∩ AW ′ = C1

Both AW ,AW ′ generate full Hilbert space H from

vacuum,

H 6= HW ⊗HW ′

with AW acting on HW and similarly for W ′.
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Example: For real scalar fields ϕ, we have observables

{ϕ(fW ) ≡
∫

d4x ϕ(x)fW (x) : fW = f ∗W ∈ C∞0 (W )}

⇒ [ϕ(gW ′), ϕ(fW )] = 0

This is “symplectic localisation”.
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Attention to gauge Theories

Covariant Gauss Law • Work with Asorey, Lizzi , Marmo

We consider free fields:

In fixed time quantisation , Gauss law is

∂iEi : ∂iEi |·〉 = 0

which is a first class constraint.

But quantum fields are distributions , so we must write∫
∂iΛEi |0〉 = 0. Λ ∈ C∞0 (R3).

which is still unsatisfactory.
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Recall that quantum fields are spacetime distributions - they

cannot be restricted to a given time. Do we have a spacetime

formulation of QED?

Yes!

The spacetime observables are

A(ϕ) =

∫
d4x Aµ(x)ϕµ(x), ∂µϕ

µ = 0, ϕ ∈ C∞0 (R4).

A(ϕ) is gauge invariant since∫
d4x (∂µΛ)(x)ϕµ(x) = 0, ∀Λ ∈ C∞0 (R4).
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The observable algebra is generated by A(ϕ) with

[A(ϕ),A(χ)] =

∫
d4x d4y ϕµ(x)D(x − y)χµ(y)

with D(x − y) being the causal commutator∫
dµ(k)[e−ik.(x−y)−c.c], dµ(k) ≡ d3k

(2π)3(2k0)
, k0 = |k|
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Eq. of motion is a constraint

G (η) =

∫
d4x ∂λFλµ(η)Aµ(x), ηµ ∈ C∞0 (R4),

G (η)|.〉 = 0

But ∂µηµ need not be zero.
For, classically ,

G (η) =

∫
d4x ηµ(x)∂λFλµ(A)(x)

is zero by E.O.M.
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Physical Meaning of G (η)

G (η) generate spacetime gauge transformations:

[G (η),Aρ(y)] = − ∂

∂yρ

∫
d4x (∂.η)(x)D(x − y)

⇒ [G (η),A(ϕ)] = 0

as ∂ρϕρ = 0, ϕ ∈ C∞0 (R4).

Superselected operators are obtained from

Q(ζ) =

∫
d4x

[
∂λFλµ(ζ)

]
(x)Aµ(x)

where ζ ∈ C∞(R4) but need not be C∞0 (R4)..
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But on quantum states |.〉 , G (η)|.〉 = 0.

That is also the case for A(ϕ)|F 〉 , with |F 〉 being any Fock

state and ϕ, η are localised ( supported) in W .

So, with no infrared effects, AW |F 〉 supports E.O.M.
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Infra dress: Non-Fock states

Now consider G (η) :

[G (η),Aρ(x)] = −∂µ
∫
W

d4y (∂.η)(y)D(y − x)

for Supp(η) ∈W .
Hence consider as warm-up

G (η)e−i
∫ 0
−∞ dxµ Aµ(x(t))|P.Q, · · · 〉|0〉γ

= e−i
∫ 0
−∞ dxµAµ(x(t))

× i∂t

∫
W

d4y ∂.η(y)D(y − x(t))]|P,Q, ..〉|0〉γ

with x(t) = P
m t
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But
D(y − x(t)) 6= 0

for x(t) ∈ R4 \W ′.

Figure: R4 \W ′ is shaded above

⇒ Photon EOM cannot be localised in W.
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There is information loss.

But now for a charged particle , there is an infrared cloud.

The dressed particle is in a non-Fock space.

If particle has momentum p and charge e, the dressed charged

state is

e−i
∫ 0
−∞ dt pµ

M
Aµ(

p
M
t)|p, e〉|0〉γ

where states |p, e〉, |0〉γ are in Fock space.
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For N such particles of total momentum

P =
∑
i

p(i)

and charge

Q =
∑
i

e(i)

the above changes to

e−i
∫ 0
−∞ dt Pµ

M
Aµ(

P
M
t)|P,Q〉|0〉γ = e−i

∫ 0
−∞ dxµAµ(x(t))|P,Q〉|0〉γ

where the last factor is a timelike Wilson line integral.
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Note

We start with a representation of all observables A.

Then we localise A to AW .

We cannot localise states.

Remark

This can be extended to Chern-Simons in 2 + 1 dimensions.
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Gravity’s Rainbow

Can we extend these considerations to quantum gravity?

Gravity is universal.

This extension will show that there is always information

leakage from Rindler wedge.

That would suggest a similar result for black holes.
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A short introduction to Fierz-Pauli

We will work in linearized gravity: the equations are those of
Fierz and Pauli - so we introduce them.
“Classical” functions will have no hats.
Let us set

gµν = ηµν + hµν

where hµν is small. The “classical” fields will serve as test
functions.
Quantum operators will have hats.
The Fierz-Pauli Lagrangian density L for spin-2 is of the
formulation ∫

δL d4x =

∫
Hµν(h)δhµν d4x

which gives the identity

∂µHµν(h) = 0.

aibalachadmin
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Given

δhµν = ∂(µχν)

one gets ∫
δL d4x = 0.

which is the gauge invariance for this system.

The classical equation of motion is,

Hµν = 0

The gauge condition is

∂λ(hλµ − 1

2
ηλµhσσ) ≡ ∂λh̄λµ = 0 (6)
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Quantum Observables

Local observables

ĥ(h̄) =

∫
d4x h̄µν ĥµν(x)

h̄µν ∈ C∞0 (R4) is gauge invariant by (6).

Quantum Algebra ( can be derived):

[ĥµν(x), ĥαβ(y)] =

[
1

2
(ηµαηνβ + (α↔ β)− 1

4
ηµνηαβ

]
D(x−y)

with

�D(x − y) = 0

D(x) being the Pauli-Jordan function , vanishing for spacelike

arguments.

aibalachadmin
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The next step is equation of motion as constraints. They are

Ĝ (H) =

∫
d4x Hµν(h)ĥµν

where Hµν(h) is equation of motion.

Since ∂µHµν = 0 , Hµν = a test function h̄µν .

The constraints are

Ĝ (H)|.〉 = 0

For by partial integrations

Ĝ (H) =

∫
d4x hµνHµν(ĥ)

so that G (H) = 0 gives the classical equations.
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Now:

The constraints generate gauge transformations.

Hence they commute with observables.

and

They are first class.



The Turbulent
Vacuum

A. P.
Balachandran

Proof:

[Ĝ (H, ĥαβ(y)] =

∫
d4x (Hαβ(x)− 1

4
ηαβH(x))D(x − y)

Using �D(x − y) = 0 we get

[Ĝ (H, ĥαβ(y)] = ∂αχβ(y) + ∂βχα(y)

with

χα(y) =

∫
d4x (

1

2
∂αh − ∂ρhαρ(x))D(x − y)

as required.
We have now recovered the analogue of QED equation except
the infragraviton twist .
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For this we need a coupling∫
d4x Jµν(x)h̄µν(x)

where

1 Jµν is a conserved classical source ⇒ interaction is gauge

invariant.

2 It is for a point particle, valid for low graviton emission.

For momentum p, one has

Jµν(x) =

∫
dτ pµpνδ4(x − p

m
τ)⇒ ∂µJ

µν = 0

For infraradiation, backreaction can be neglected

⇒ pµ constant.
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For a particle of mass m, p2 = m2 , the in state as before is,

|pi , 0〉in = exp

[
i

∫
x0<0

dx0 d3x Jµν(x)ĥµν(x)

]
|p〉|0〉h

where

|p〉 = Radiating particle of Fock state

|0〉h = Graviton Fock ground state

The commutators of Ĥ involve D-function. Hence as before if

Ĝ (H) is appropriate for W ,

Ĝ (H) =

∫
W

d4x Hµν(x)ĥµν(x),
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in〈p; 0|Ĝ (H)|p; 0〉in (7)

does not vanish for x(t) = p
m t /∈W :

(7) involves D(x − p
m t), x ∈W .

We can take for W,

W̃ ⊂W

and x(t) entirely outside W̃ . Still (7 ) vanishes only for

x(t) ∈W ′.
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Work in Progress : Generalisation to Any Massless
Integral Spin Particle

Consider a massless helicity s ∈ Z particle. Equations of

motion are those of Fronsdal. 1

Superselection Operators

For QED, the current Jν leads to a scalar charge Q as a

superselection operator.

So, we guess and can prove that for Fierz-Pauli-Fronsdal: it is

momentum Pµ.

For spin 3, it will be a symmetric traceless tensor Qµν .

Thus we expect a hierarchy Q,Qµ = Pµ,Qµν , · · · .
Open Questions:

What is the interpretation of Qµν?

Their algebras?

1Elegantly discussed by Asorey et.al.




